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A NEW METHOD OF REINFORCING A
HOLE EFFECTING LARGE WEIGHT SAVINGS*

S. K. Durt and J. S. Brockd

Naval Ship Research and Development Center,
Washington D.C. 20007

Abstract—A new method of reinforcing a hole in a flat plate under uniaxial tension is proposed in which the
reinforcing material is present on the boundary of the hole only in the regions containing high stresses. Since the
reinforcement is discontinuous, its amount, which varies along the arcs of the hole. is represented by a Fourier
series in the analysis of the stresses. The stresses are determined by the use of two complex potential functions
in series form. The series are truncated at the point whereafter any additional terms do net produce any significant
change in the magnitude of the stresses. Numerical values are given for the case of a circular hole with various
types of reinforcements. Finally, it is shown that this type of reinforcement can effect approximately 60 to 70 per
cent savings in weight along with a 30 to 35 per cent savings in the welding and about 10 per cent reduction in
the maximum stress as compared to the conventional all around reinforcement.

NOTATION
A Area of cross section of the reinforcing ring
y, by Constants in potential functions
C Constant
D Maximum value of F(8)
h Height of reinforcement
L, M, Constants in the Fourier Series
Fo.Ro.S¢  Forces on reinforcement element
R Radius of circular opening
R, Ratio of area replaced to area removed (A/Rt)
T, Applied tensile stress at infinity
t Thickness of plate
z Complex plane (x +iy)
@, B Cuarvilinear coordinates
Bo.y Angular dimensions of reinforcement
¢ Complex plane (¢**%)
4 Polar Angle
v Poisson’s ratio
g Boundary value of { at ¢ = 0
0., 05, T,y Curvilinear stresses
ds, 46 Linear and angular increments
F(6) Reinforcement function
@(z), (=) Potential functions in z-plane

@), YO Potential functions in {-plane

_ *The opinions expressed are those of the authors alone and should not be construed to reflect the official
views of the Navy Department or the Navy Service at large.
+ Physicist.
1 Structural Engineer.
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INTRODUCTION

THE use of reinforcements at the boundaries of various kinds of openings is common
practice in ship and aircraft construction. Beginning with the Kirsch [1] solution of a
circular hole in an infinite plate under uniaxial tension, many other papers [2-7] are
documented in the literature which deal with the boundary value problem of the rein-
forcement of a circular opening in a flat plate under various loading conditions. In the
above investigations the reinforcement of the circular opening is accomplished by means
of a continuous ring, doubler plate or combination ring and doubler plate which extend
uniformly around the periphery of the opening. This constitutes indiscriminate use of
reinforcing material since a substantial proportion of this material is distributed in regions
of low stress. The reinforcing material in the low-stress region is effectively wasted. Such
ineffective use of material is a disadvantage and a severe limitation for an optimum design.
especially for weight critical structures such as high speed destroyers, surface effect ships.
deep submergence vehicles, etc.

In view of the above it appears logical to reinforce the opening only in the regions of
high stress rather than providing conventional all around reinforcement. An obvious
advantage of this new type of reinforcement is realized in large weight savings.

The principal objective of this paper is, therefore, to determine the stresses around
any general shaped opening in a large flat plate under uniaxial load when the opening is
reinforced only in certain discrete regions, viz. the highly stressed regions.

The method of solution is based on the approach developed by Muskhelishvili [&]
for solving the plane elasticity problems and the following assumptions:

—_—

The plate is thin compared to the other dimensions and extends to infinity in both
x- and y- directions.

The plate material is elastic, isotropic and homogeneous.

The reinforcing material is the same as that of the parent plate and is concentrated
on the boundary of the opening (compact reinforcement).

4. The reinforcement can be subject to hoop stresses only and has no bending stiffness.

(USRI

The first two are the usual assumptions for a generalized plane stress system within
the theory of elasticity. The third assumption is clearly justified since the opening is usually
large compared to the reinforcement. The last assumption is based on the findings of
References [5] and [6], which suggest that the effect of bending stiffness on the overall
stress field is of second order. The effect of nonuniform stiffness of reinforcement is assumed
to be small as in Reference {9].

The cross sectional area of the reinforcement at any specific point on the boundary
of the opening is assumed to be a function of the angular coordinate and can have any
desired distribution. The method developed in the present paper is general so that it is
applicable to an opening of any shape. As an illustration of the method the case of a circular
opening is considered in detail. The numerical values for the boundary stresses are given
for a number of reinforcement distributions. Finally, it is shown that, by this method. not
only large savings in the weight of reinforcement but also substantial savings in the amount
of welding and a simultaneous reduction in the magnitude of maximum stress can be

realized.
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BOUNDARY CONDITIONS

Figure 1 shows an opening of general continuous shape which is reinforced in the
region 1 2 3. There is no reinforcing material present in 3 1. The forces acting on an element,
ds, of reinforcement are shown in Fig. 2. If this boundary is to be in elastic equilibrium
the following equation must hold true.

%ds-FSo ds=0

Cs

RO dS_FO dﬁ = 0
RO = Gat

SO = Tab'['

Furthermore, the circumferential strain in the reinforcement must be the same as that
in the adjoining plate boundary. therefore

Fy = Alog—va,) (2)

FIG. 1. Reinforced hole.

dF,
Fo+ ds R
a5 S, / 0

FiG. 2. Forces on boundary.
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where A is the cross-sectional area of the reinforcement.
From equations (1) and (2} it follows that

A
ot
* ds+ 4%
dgt
(3
A db‘ {
N Pdp
# By ds A
\dp "
with
A
F§ = — )
dﬁ
the boundary conditions represented by equations (3) can be conveniently written as
o, = F(Q)O'l,
(3a)

The function F(3) will be referred to as the reinforcement function. The solution of the
problem is thus contained in the analysis of the equations (3a).

REINFORCEMENT
The reinforcing function F(3) can be represented as a complex Fourier series such that
- M
F(9 =Y (L,,a"+—n'f) (5)
n=0 g

where o is the boundary value of the function { = e**# for « = 0 and L,. M, are the
constants, possibly complex, in the expansion. It may be pointed out that a suitable choice
of the constants L,, M, will permit reinforcements of any size and distribution within
the region 0 to 2=. The above series, equation (5), can be suitably truncated to obtain any
desired degree of accuracy for a particular desired distribution of the reinforcing material.

DETERMINATION OF STRESSES
The stress components in a cartesian plane defined by z = x+iy are given by
o+, = 2¢(2)+9'(2)]
— 0+ 20ty = 2Z¢"(2)+ ¥ (2)]

{6)
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where a prime () indicates differentiation with respgct to the argument of the function
and a bar () is the conjugate complex.

In order to solve problems for general shapes-of the boundary, use may be made of
conformal mapping of the boundaries onto the unit circle, such that

= = J). (7)

With the application of equation (7) it is simple to show that the following equations
hold good at the boundary { = ¢

B <p’(a) o’ [—=[o) ¢'(0) 1 @'la)\’
o4 = )+ ) [ (a)(z,(a)) +¢(o)] 76_)4-2622(0_ l:z(a)(H( +¥'(o ]
. o) ¢lo) o ¢'(o
O =il = — )+Z(O') 22'(0)[( (A ) +y'(o ):I (8)
For a particular coordinate system defined by equation (7) it can be shown that
é 1 @
o (ZEV R )

Equations 3(a) permit the representation of ¢, and 7,5 in terms of the stress g, the
radius of curvature of the actual opening and the reinforcement function F(3). The second
of equations (8) is a representation of the combination stresses ¢,— it,; exclusively in
terms of the boundary values of the potential functions ¢({) and ({) and the mapping
function z({). Therefore we have the following equivalence at { = ¢

¢'(0) @_ o’ ¢'(o)
:'(J)+m 2:’(0—)[( ( )Hb }

P l db dS I (’;

where o, is given by first of equations (8).

Since the functions ¢({) and ¥({), whose boundary values at { = ¢ are ¢(c) and (o),
are analytic on the outside of the unit circle in the {-plane, the two functions ¢(() and ¥(0)
can be conveniently represented in the following form

o) = To€ [g + Z V,,]

T,C ~ b,
Yi(g) = 3[ °e-2W+Zm]

where T is the uniform tension at infinity at an angle a, to the x-axis and C is a constant.
The solution of the problem is now reduced to the determination of the complex constants
a, and b, which can be easily realized by using one of the methods due to Muskhelishvili.
After the constants a, and b, have been determined equations (8) can be used to obtain
the individual stress components.

(10)

(1)
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REINFORCED CIRCULAR HOLE

As shown in Figs. 3a and 3b the reinforcement function F () has the value zero from 0
to y and increases linearly to a maximum value D at n/2— f, whereafter it remains con-
stant up to m/2. From a practical standpoint the reinforcement function F(3) has been
chosen to have a double symmetry. For the present case of a circular hole equation (4)
will reduce to

F(9) = (12)

1 -
VR

D
6 4 T, ron -y w
7 Py Th

Fic. 3. Reinforced circular hole.

since ds/df is the radius of curvature R of the circular hole. The dimensionless quantity
A/Rt now becomes the ratio of the area of cross section, 4, of the reinforcement {area
replaced) to the cross sectional area, R, removed due to the hole. Equation (12) can be

rearranged as

A FO
Rt [—VFY 1

Equation (13) clearly shows that the ratio R, of area replaced to area removed remains
constant for a constant value of F(3). However, if F(3) is linearly varying then R, is non-
linear ; the departures from linearity are small and can be computed for individual cases.



A new method of ' :inforcing a hole effecting large weight savings 265

The function F($) as shown in I ig. 3 can be represented by equation (5) if M, = L, (sym-
metry requirement)

Lo = n+2(Bo—7)
47
L, = (—1)*cos 2nfy—cos 2ny (14)

an*[n—2(Bo+7)]
Ly =0.n> 1.

Some reinforcements, having distributions other than shown in Fig. 3 and, which are of
academic interest are when the amount of reinforcing material varies according to a cosine
distribution. For example if L, = — L, has a non-zero value K and all the other L, are
zero, then

F(9) = K(1 —cos 29). (15)
On the other hand if

(16)
4K

>
7(2n—3)2n—1)(2n+1)

then F(8) will be zero from 0 to 7/4, vary according to K(1+cos 49) from n/4 to (3n/4)
and remain zero from (37/4) to n. It may be pointed out that all the above reinforcement dis-
tributions have a frequency 2 with a period = within the region 0 to 2n.

The outside of a circular hole of radius R can be mapped onto the outside of unit circle
in the {-plane by

L2n—1 =(_1)n+1 1

z =R (17)

The value of the constant C is equations (11), for this case, becomes R. Equation (10)
which is the boundary condition for any general shaped hole, in the present case, reduces to

: 2 (n+1)(n—1)ay,_ — i
2+ze_2,a00_2_z(n+ )(n )an "1 (n+1)bn+1_ Z(n—l)c_l,,_la"
0 4 )
e n, Ka 1&n—Dn-2a,—y—(n+1)b,,, e**
R
. 12
+1—e‘2"‘°az+§;[(n—l)(n—2)5,.~1—(n+1)l3..+1]a"} (18)
+{2Ln(an+%)} {2e_2iaoaz+1§n(n—1)(n—2)an_1—n(n+1)bn+1
0 g 25 "

0.2

2 2iap 100
_<°€ —Eg[n(n—l)(n—z)én—l—n(n+1)5n+1]}
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where
K,=(—-nL,
K, =(+nL,
Either by successive integration of equation (18) around the unit circle or by equating

to zero the sum of the coefficients of equal powers of ¢, we obtain

by+Lotby +b)+ Y, 2m— DLty +d,_1) = 4Lo+ 2L, (e e~ 2i%0)_2

m=1

dn i+ Zl Cm—DLy - iy 1 + Lot~ )+ Y (2m =1Ly i (19

m=1

™

n

+ by +b) =20, ,+ L, s+ Ly e 042, e¥ 2L o g |

byiy = na,_;—9,,2 e, n> |

where 6, , is the Kronecker delta.

Equations (19) can now be broken into two sets by separating the real and imaginary
parts of the system. It can be easily shown that if o, = 0 the imaginary part of the system
vanishes and the real system becomes

(142Lo)b,+ ¥ 22m—1)Lodp_ . = 4Lo+4L,—2

m=1

4 o
Z (2m~1)[Lmn+l‘zn+n+Ln m+7*ﬂ£:! Uy — +thi
ol 2m--1
. (204
= 2((),1_3‘*‘14,; :+Ll—n+L;+n)+2L": nx=l
bn*l = 0y "2(\;'1”“ noz |

The above infinite system of linear algebraic simultaneous equations is very intricate
Therefore it was necessary to truncate the above system such that it could be programmed
and solved on a digital computer. The system was truncated at a point where acceptable
convergence was obtained and any further additional terms did not produce any significant
change in the magnitude of the stresses. Stresses with absolute magnitudes greater than
0-1 are computed to an accuracy of at least 0-3 of 1 per cent for T, = 1. These stresses arc
therefore numerically equal to the stress concentration factors.

RESULTS AND DISCUSSION

Although a large number of variations are possible in the distribution of the reinforcing
material, only those which appeared important from a practical standpoint were studied.
These cases are enumerated in Table 1 together with the tangential stress at n/2 and the
local maximum tangential stress. The last column of Table 1 shows the percentage ui
the weight of reinforcement saved when compared to the all around reinforcement of
case 14 with the exception of case 7 where the comparison 1s based on an all around
R. = 1:0. Case 14 of all around reinforcement checks with the results of reference 6
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TABLE 1. SUMMARY OF RESULTS

No. R, Bo ¥ ag Local maximum  Weight*
Deg. Deg. at § = n/2 o and remarks saving
1 04 0 0 1-562 1-659(80°) 50
2 04 0 30 1-467 1-672(70°) 67
3 04 0 45 1-356 2-588(45°) 75
4 04 5 35 1-489 1-623(65°) 67
5 04 7 37 1-489 1-602(65°%) 67
6 04 10 30 1-556 1-548(70°) 61
7 10 10 30 1053 1-830(30%) 61
8 04 10 35 1-535 1-584(35°) 64
9 04 15 30 1-590 1-465(65°) 58
10 04 15 35 1-571 1-696(35°) 61
11 04 0 0 1612 Smooth cosine 50
12 04 0 45 1-359 2-53(50°), Cosine 75
i3 04 45 44 1-655 3-894(40°) 49
14 04 90 0 1-702 Allaround
15 04 573 26:97 1-532 1-606(71°} 62
16 04 9-55 327 1-538 1-558(69°) 63

* The numbers in this column refer to the percentage of the weight saved compared to the all around rein-
forcement.

The boundary stresses o,, 05 and 7,5 were computed at intervals of 5 degrees for the
cases listed in Table 1. The sample values of ¢,, 6; and 1,4 are given in Table 2 for case 16.
The last column in Table 2 shows the values of the reinforcing function F(39). In accordance
with one of the boundary conditions given by the first of equations (3a), F(3) when multiplied
with o, should give o, at the boundary of the hole. This served as a good check on the
computations and is evidenced in Table 2.

TABLE 2. SAMPLE VALUES OF STRESS FOR CASE 16 OF TABLE |

9 o, as Tap F(8)
(4] 0 —(-8983 4] 0
S 0 —0-8678 0 0
10 0 —0.7702 0 0
15 0 —0-5895 0 0
20 0 —0-3036 0 0
25 0 01159 0 1]
30 0 0-7842 0 0
35 00190 1-2746 —0-482 00171
40 00649 1-2068 — (5766 00546
45 01198 1-:3055 — 06670 0-0920
50 01812 1:3977 —0-7280 0-1294
55 02463 1-4726 —0-7555 0-1668
60 03121 1-5261 —0-7476 0-2042
65 0-3755 1-5550 —0-7033 0-2416
70 (4335 1-5565 —0-6231 0-2790
75 04831 1-5296 - 05071 03163
80 0-5210 i-4759 —0-3444 0-354
85 05426 1-5198 —01598 0-3572

90 0-5496 1-5381 0 0-3571
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Figures 4-8 show the distribution of the boundary stress and the reinforcement function
F(8) along the periphery of the opening for most of the cases given in Table 1. In the
Fourier series expansion of the reinforcement function F(9), 95 non-zero terms had to
be retained in order to closely approximate the desired shape. However, the discontinuities
in the function F(8) due to sudden changes in the amount of reinforcement were auto-
matically removed because of the truncation. This is clearly indicated in the oj-curves
which do not approach infinity (theoretical value of the stress at discontinuities) but only
show a light stress concentration. A quantitative relationship between this local stress
concentration and the degree of smoothing of reinforcement due to truncation can be
established by properly analyzing the truncated function F(3) and correlating it with the
computed stress concentration. For reinforcements such as case 13 generous fillet welds
should be used to avoid localized stress concentration. In general, the stress o, appears
to be always negative at 3 = 0, which is expected since 3 = 0 coincides with the direction
of the load. With increasing value of 8, o4 passes through zero and reaches a local maximum
in the vicinity of the beginning of the reinforcement, passes through another local maxi-
mum and a local minimum in the neighborhood of the point where F($) assumes a constant
value and finally o, assumes its value at 3 = n/2, which in the conventional types of all
around reinforcement happens to be the point of maximum stress.

It is interesting to note that in spite of the smoothness afforded by the cosine distribu-
tion of the reinforcement function F(9) the stress in cases 11 and 12 are not particularly
superior or desirable. This can be explained by the fact that a cosine distribution does not
represent a streamlined shape and therefore is still subject to stress concentrations, case 12
of Fig. 7.

It appears from Figs. 4 through 8 that the g,-stress distribution is quite sensitive to
the slope of the function F(3) between the two points where the reinforcement begins
and becomes constant. This behavior has a close relationship with the theory of flank
angles in notches and fillets. The local stress concentration at the beginning of the rein-
forcement is a function of the flank angle formed by F(3) at that point. This can be observed
in Fig. 5 where increasing the amount of reinforcement from R, = 0-4 (case 6) to R, = 1-0
(case 7) decreased the flank angle and hence the stress concentration was increased. An
inspection of Figs. 4 through 7 shows that for the same flank angle the maximum stress
concentration o.r.urs for larger values of . This is quite obvious since the nominal stress.
boundary stress at the point without reinforcement, for a circular opening is larger for
larger values of 7. It is, therefore, imperative to properly select the point where to begin
the reinforcement. Near optimum conditions can be arrived at by investigating various
combinations of R,. i, and 7.

Out of all the cases considered case 16 appears to be the most favorable from a stress
point of view. The magnitudes of the parameters ff, and y for case 16 were the results of
following consideration.

From a dcsigner’s standpoint it is more desirable to describe the dimensions of the
reinforcement as fractions or multiples of the dimensions of the opening. Figure 9(a)
shows a circular opening of radius R symmetrically reinforced on the arcs 2345 and
2'3'4'5". The cross hatched portion 2345432 of Fig. 9(b) is the development of the
reinforcement 2 34 5 (neglecting the nonlinearity of R,) of Fig. 9(a) on a plane. The
height /1 of the reinforcement can be suitably chosen depending on the thickness of the
parent plate. The area 1346431 would be the development of the reinforcement if it
were all around the opening. The savings in the weight of the reinforcement can be easily
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6 B /// FR £ z - /4
’ 3 € OF PARENT
PLATE

FiG. 9. Reinforcement of case 16.

shown to be approximately 63 per cent, which is substantial. As a fringe benefit the maxi-
mum stress also comes down from 1702 (case 14) to 1:558 which amounts to about 9 per
cent reduction. From a technological standpoint welding between the points 12 and 56
will also be saved which is approximately 36 per cent. The maximum value of the ratio R,
of area of reinforcement (area replaced) to area removed, as given by equation (13) can

also be represented by
h
R, = (w—l)z (2D

t R

where T is the thickness of the reinforcing material. Assuming R, = 04 and A/t = 11,
which are realistic values, it easily follows that T/R = 0-04 which of course agrees with
the assumption of a compact reinforcement. From a constructional standpoint the above
type of reinforcement with its many advantages is no more complicated than a con-
ventional all around reinforcement.

Finally, it may be pointed out that assuming R, to be linear is not necessary but only a
simplification which does not introduce large errors.

CONCLUDING REMARKS

A general method has been deduced for a new type of reinforcement of holes in large
plates. An optimum or near optimum design for the reinforcement can now be achieved
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by the proper distribution of the reinforcing material. As an example of this method the
case of a circular hole has been investigated and the numerical results are included. In a
typical case 63 per cent of the weight of the reinforcing material and 36 per cent of the
welding necessary can be saved and in addition the magnitude of the maximum stress can
be reduced by 9 per cent as compared to the case of all around reinforcement.

This type of reinforcement may prove to be particularly useful in weight critical struc-
tures.

Acknowledgment—The authors wish to express their sincere appreciation to the Naval Ship Engineering Center
for sponsoring the research embodied in this paper.
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A6crpakt—IIpeaniaraeTcs HOBbIH METOA YCHIIEHHS OTBEPCTHS B IVIOCKOM JMCKeE, TOJBEPKEHHOM NEHCTBHIO
OAHOOCHOTO PACTSDKEHMA. YCWIIAIOLMH MaTepHall PaclojIOkKeH TONBKO HA KPaK OTBEpCTHs B o6macTax
3HAYMTENIbHBIX HANPSKEHHU. B BUAY TOTO, YTO YCHIEHHE IIPEPBIBHOE, €rO BEINYHHA, H3MEHSIEMAS C OPyroH
OTBEPCTHUS, IPEACTABAACTCA U PACYETA HaNpsDKEHUH panaMu dypbe. OnpenesiroTCS HANPSKEHUS , Ny TEM
MCIIOJIL30BAaHMUSA B BUIE PANOB IBYX GYHKIMH NOTeHIMaa. PAbl MOXHO yceub B TOYKE, NMOCIE KOTOPOH
HUKaKHe 100aBOYHBIE WICHB! HE BIMAIOT CYILIECTBEHHO HA BEIMYMHY HanupsokeHuit. JaroTcd YHCICHHBIC
3HaYeHMs ANA CIyuas XpPYIJIOro OTBEPCTHS, C Pa3sHBIMM THIIaMH ycuneHHsA. OKaHYaTeNbHO, TOKA3bIBACTCS,
4TO NpeJIaracMselif THII YCHJICHUA MOXeT NpuHeCTH npHOIM3uTenbHo 60-70%, 3xoHoMuu Beca, 30-35Y
3KOHOMHHM B CBapke u BOMM3u 109 3KOHOMHM peNyKOHH MAKCHMAJBHOTO HANPAKCHHS, MO CPABHEHMIO C
OOBIYHO PACIONIOXEHHBIM YCHIIGHHEM BOKPYI BCEFO OTBEPCTHS.



